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Abstract: Optical flow is the apparent (or perceived) motion of image brightness pat-
terns arising from relative motion of objects and observer. Estimation of the optical flow

requires the application of two kinds of constraint: the flow field smoothness constraint

and the brightness constancy constraint. The brightness constancy constraint permits

one to match image brightness values across images, but is very restrictive. We propose

replacing this constraint with a more gerrral constraint, which permits a linear transfor-

mation between image brightness values. The transformation parameters are allowed to
vary smoothly, so that inexact matching is allowed. We describe the implementation on

a highly parallel computer, and present sample results.

1 Introduction

Optical flow is the apparent (or perceived) motion of image brightness patterns arising
from relative motion of objects and observer. Optical flow can give important information
about motion of the observer (i.e. passive navigation), motion of objects in the scene, and
the spatial arrangement of these objects. Additionally, discontinuities in the optical flow
field can be used to segment the image into regions corresponding to different objects.

To be precise, an optical flow field is a two-dimensional vector field relating brightness
patterns in an image at one instant of time to brightness patterns at the next instant of
time. There does not exist a unique optical flow field for a given image sequence; rather
there are infinitely many flow fields satisfying the image constraints. This illustrates one
of the difficulties associated with determining optical flow, namely, identifying sufficient
constraint to produce a unique optical flow field. The other difficulty in determining
optical flow is more fundamental, and involves finding image elements to be placed into
correspondence.

As in stereo, methods for computing optical flow can be classified according to whether
detected features are used as primitive elements, or whether image brightness values (and
gradients) are used directly. Feature-based approaches to optical flow use detected edges
almost exclusively (Hildreth [1983], Davis et al [19831, Murray & Buxton [1984], Wohn
[1984]). Although it is possible to use detected points to process visual motion, no one
seems to have attempted to determine optical flow from isolated point displacements.
Horn & Schunck [1981] were among the first to use image brightness directly to determine

V optical flow. They solved the problems mentioned above by identifying two constraints:-
the spatial smoothness constraint and the brightness constancy constraint. Other methods

Oii based on various smoothness assumptions have been proposed (Prager & Arbib [1983],
Paquin & Dubois [1983], Yashida [1983], Anandan [1984]). motvsamtins

The smoothness constraint arises from the observation thatmotvsamtins
the result of objects of finite size undergoing rigid motion or deformation. Neighboring

object points have similar motions or velocities, and to the extent that they project

-Cr



Computing Optical Flow

to neighboring image points, neighboring image points will also have similar motions.

Therefore, the optical flow field should be smooth almost everywhere. Exceptions occur

at occluding boundaries, where neighboring image points are not generally the projections

of neighboring object points.

The brightness constancy constraint rests on the assumption that the brightness of

a small image patch remains approximately constant as the corresponding surface patch

moves in the environment. This is a reasonable assumption when the lighting conditions

are unchanged between successive images, object surfaces are non-specular, and there is

only a small amount of motion between image frames. If these conditions are met, then

the brightness constancy constraint will apply approximately at all image points.

It should be noted that the smoothness constraint depends on the scene structure,

and is independent of illumination, surface reflectance characteristics, and the type and

degree of motion involved. On the other hand, the brightness constancy constraint does

not depend on scene structure (except for the influence of surface microstructure on

reflectance), but instead depends on the degree and types of motion, and factors such

as illumination and surface reflectance which affect image irradiance. Violations of the

brightness constancy constraint, when they occur, affect image patches or even entire

images. Therefore, it is important to find ways to relax this constraint.

Cornelius & Kanade [19831 propose a variation of the Horn & Schunck [1981] method.

In their formulation, they allow gradual changes in the way an object appears in a se-
que;ce of images. An image point does not have to preserve the same brightness value

as the object point that give rise to it moves in the environment, however, the variation
is enforced to be smooth from one image point to the next.

Ii this paper, we propose a new formulation by relaxing the brightness constancy con-

straiqt. Our approach does not require exact brightness matching across image frames,

but .Jcepts even approximate matches. We achieve this by permitting a linear transfor-
matior of image brightness values between image frames, and constraining the allowed
traiisformations. Our formulation, in special cases, reduces to that of Cornelius & Kanade

[ )r that of Horn & Schunck [1981].

2 N1:tthematics of Optical Flow
s

iIt 0 coordinate system be aligned with the imaging system so that the z-axis points

a,, , he optical axis. The image plane can arbitrarily be chosen to lie at z = 1 so that

i,.. .~ ;points are given by r = (z, y, I)T. Let E(r, t) denote the brightness of image point

r t :1 ,e t. At a later time t + bt, the brightness pattern at r will have moved to a new

k 1,t iI ,i r +-r = (x + 6x, y + by, 1)T. The optical flow is the velocity field arising from

0i ,ived motion of image points r. It is derived from the displacements of image
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points by taking the limit as 6t -+ 0,

dr d) dy
rt =- = (, -)T (uvo)T

where u and v denote the components of optical flow rt.
The brightness constancy constraint of Horn & Schunck [1981] expresses the restriction

that the brightness of an image patch remains approximately constant as the surface patch
that gives rise to that image patch moves in the environment. Setting the total derivative
of image brightness equal to zero, we can write

dE
dt

Applying the chain rule, we obtain

t9E 9E dx 6E dy 05'-T + -5 dx t +  idty= O,

or

Et + Er" rt = 0,

where Er = (8E/Oz, aE/ay, O)T. This equation is sometimes referred to as the image
brightness change constraint equation derived under the constant brightness assumption.
It has also been referred to as the optical flow constraint equation.

Assuming brightness constancy, we define optical flow as any 2D vector field rt, defined
on the image plane, that satisfies the image brightness continuity equation.

2.1 Image Brightness Constraint

Nagel [1983a,1983b] suggests a formulation that incorporates second-order effects in or-
der to obtain a better estimate of the optical flow around edges and corners. In his
formulation, the brightness change constraint equation is written

Et + E, rt + 2rTErrrt = 0,

* where
where a92E/8z2  0a2E/oazay0

Er (02 E/ox4y 0 2E/ y2  o .
0 0 0

fps Here, again, the constraint equation rests on the brightness constancy assumption.

The formulation proposed by Cornelius & Kanade [19831 allows gradual changes in
the way an object appears in a sequence of images. In their formulation, the brightness

change constraint is written dE

dE



4 Computing Optical Flow

An image point does not have to preserve the same brightness value as the object point

that gives rise to it moves in the environment. Hence, the rate of brightness change can

be non-zero; that is,
dE

dt
More generally, we propose a formulation that allows a linear transformation between

brightness values in consecutive images. We choose a linear transformation because it is

one of the simplest non-trivial transformations. This is a less restrictive assumption than

brightness constancy, and can be formulated as

E(r + 6r, t + 6t) = M(r, t) E(r, t) + C(r, t),

where M is the multiplier and C is the offset functions in the linear transformation. This

is our revised image brightness change constraint equation.

For small 6t, we expect M to be close to 1, and C to be close to 0. Since we are

dealing with incremental changes, we can let M = 1 + 6m and C = bc. In fact, rn and c
are the quantities of interest to us. Noting that bm -- 0 and bc -* 0 as bt --* 0, we can

4define time derivatives, mt and ct,

Mt -= lim - and ej = limr
6t-.o t t-0 "t

that we will use in our derivation.

Rewriting the brightness change constraint equation, we obtain 0
E(r + 6r, t + 6t) = [1 + 6m(r, t)] E(r, t) + bc(r, t).

The left hand side can be expanded as follows:

OE E
E(r + 6r, t + 6t) = E(r, t) + - . 6r + -6t + 0(f) = E, -r + Et 6t + 0(i).ar at

Substituting this into the constraint equation and simplifying, we have

Er "6r + Et ,t - E 6m - 6c + 0(f) = 0.

Finally, dividing through by 6t and taking the limit as 6t + 0, we arrive at

Et + Errt - E mt - ct= 0.

This is our revised optical flow constraint equation. In the special case that M = 1 and

' 0 (and, hence, mi 1  0 but ct 0), this becomes similar to the constraint equation

in thle Cornelius & Kanade [19831 formulation:

ct = Et 4- Er " rt.

Further, in the more restricted case that M = 1 and C = 0 (that is, mt = ct = 0), our

constraint equation reduces to the one in the Horn & Schunck [19811 formulation:

Et + Er • rt = 0.

4



5

P.

P

C/ 
C'

Image at Time t Image at lime t+dt

Figure 1. Corresponding iso-brightness contours in an image sequence.

3 The Aperture Problem

* "There are an infinite number of valid optical flows given an image sequence. To see

this, we note that if rt is an optical flow, so is

A rt = rt + f(x,y) (Er X .)

for any f(z, y), where 1 is a unit vector perpendicular to the image plane. First, note

that r' . -= rt • - = 0, as it should. Furthermore, we have

Et + Er [rt + f (Er x i)] - Emt - ct= Et + Er .rt - Emt - ct= O.

This can also be explained graphically. Consider the simple case where M = 1 and C = 0,

so that the constraint equation reduces to that of Horn & Schunck formulation:

Er rt + Et = 0.

Referring to figure 1, suppose that C' is a contour of constant brightness in the secondp image corresponding to contour C in the first image. It is not easy to decide which point

P' on C' corresponds to a particular point P on C since the contour generally changes

shape as the object moves in the environment (Horn 119861). In fact, there are many

possible ways to establish correspondence between points on contours C and C'. This

ambiguity has been referred to as the aperture problem. In terms of the iso-brightness

contours, any vector field that transforms contour C into contour C' is an acceptable

optical flow.

9 .9



6 Computing Optical Flow

In our extended formulation, the indeterminacy of the optical flow is even worse than

this example suggests. Since mt and ct are unconstrained, the optical flow field can be

completely arbitrary, with either or both of these transformation fields varying in such a

way as to guarantee that the brightness constraint is obeyed. It is, therefore, necessary

to select, out of the infinitc number of possible optical flows, one which is consistent with

the physical constraints of the problem. One may hope to obtain an optical flow field

that approximates the apparent motion of brightness patterns in the image as judged by
a human observer.

3.1 Smoothness Assumption

Discontinuities in depth (for example, at occluding boundaries) give rise to disconti-

nuities in the optical flow field. Also, object motions may be different across occluding
boundaries, which can give rise to discontinuities in the optical flow. Additionally, discon-

tinuities can be expected in mt and ct, if illumination conditions or reflectance properties
that depend on surface material change abruptly as the surface moves in the environment.

In the absence of depth discontinuities or abrupt changes in illumination or surface re-

flectance properties, the optical flow and transformation fields are expected to be smooth.

Based on these facts, we require that the optical flow, the multiplier, and the off-set fields

should be consistent with our revised optical flow constraint equation, and should vary
smoothly from one image point to the next.

Smoothness can be imposed by minimizing a functional that is a measure of departure
from smoothness. Horn & Schunck [1981] proposed minimizing the integral of the square

of the magnitude of the gradient of the optical flow. Hildreth [1983] investigated a similar
formulation, but incorporated different measures of smoothness.

The gradient of the optical flow is

Vtart (au/ax aulay
Vrt= -= av/ax avlay 0

ar0 0 0]

The measure of departure from smoothness that is to be minimized is written

C.. 11 [ Vrt 1dxdy.

. [ ,:i • 2 denotes the Euclidean or Frobenius norm of a matrix, which is the sum of the

STIa,. of all the elements of the matrix.

Sirmilarly, smoothness deviations can be defined for the transformation fields

em J1VM,1I2 dxdy and e,- ] Vct1 dx dy.

.1 f

S.-
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4 Minimization

The image brightness constraint ald the smoothness constraints can be combined by
defining a single functional that weighs each contribution. Rather than enforcing the
brightness change constraint exactly, we use a penalty term that measures the square of

the error in the constraint equation over the whole image:

eb= (Et + Er rt - Emt -ct) 2 dzdy.

To ensure that the optical flow and the transformation fields (approximately) satisfy the

optical flow constraint equation, we want eb to be small.

All together, the problem can be formulated as that of minimizing the functional

e = eb + e\e 8 + oAmem + Ae.,

where Aa, Am, A weigh the total error contributed by each term.

Using variational calculus, the Euler-Lagrange equations for this problem can be

found. These equations form a set of necessary conditions that a solution to our mini-

mization problem has to satisfy. Sufficiency is not guaranteed, in particular, it is possible
for a particular proposed solution to obey the Euler-Lagrange equations yet not be a

M global minimum. This will occur at local minima, points of inflection, and local maxima.

Note, however, that there is no global maximum, as the functional is not bounded from

vabove. We will not address the question of sufficiency further in this paper.

The variational problem is solved by using the formula

% - T'P - -%f'=0,

where %P is the integrand in the cost functional and f is each of u, v, mt or ct, in turn.

Applying the above formula, we obtain

E

V2V Y -- (Et + E.,u + Eyv - E mt - ct),

= (Et + Eu ± Eyv - Emt - ct),
A M

V 2Ct - (Et + Eu + Eyv - E mi - ct).

For a well-posed problem, we need to specify the appropriate boundary conditions. In the

absence of fixed boundary conditions (values of u, v, m, and ci on the image boundaries),
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we need to specify natural boundary conditions. For our problem. the natural boundary

condition is
(f/.,f,)T. = 0,

where fi is a unit vector perpendicular to the boundary. Again, f can be any one of

u, v, mt or ct, in turn.
[J.

4.1 A Discrete Implementation

In the discrete domain, the Laplacian operator V 2 can be approximated as a center-

surround operator

V 2y . i(7- f),

where 7 (the "surround") is an averaged or smoothed version of f. For example, we can

use the following simple approximation:

f= 1(fi+,j -+ fi-,j + fij+1 + fij-1).

The scale factor K can be absorbed into the appropriate A and, therefore, need not be
considered further.

Substituting the approximation to the Laplacian in the Euler-Lagrange equation,
derived earlier, we can write a single matrix equation

A f =

where
u Aeir- E.Et

f= v , g) M A,- EyEt
Mt , mt $m + EEt

"0ct A, e+ Et

and
E* + A3 E,, Ey -EE E,

,E Ey E' + A, - EYE E
-EE -EYE E 2 Am E

-- Ex -- EY E I+,,

These equations have to be solved iteratively since the optical flow, at each image cell,

depends on the average of the optical flow from the neighboring clls. The same is true

for rnt and ct.

Solving for the unknown fields, u, v, mr, and ct, we find tbat

.1 f A- g(f)-

O5L.C•U.

O,



where

(c; A-E 1 -EA"yA.AE EEAA 8  EzAmA.
1A 

E AmA.+EA.A.+
A- 8EyA E2AA.-j-EA,,. EYEAA, E AmA,= -- , 2+-EA

E, EA, EEA, \E.+ -E-+
EAmA (E+E+A.)AA

and

ce = AmA + E2 AA' + (E' + Ey + A8)AcAmAa.

This is a system of linear equations, which can be used to recover the optical flow u and

v, and the transformation fields mt and cf.
The i'.eld equations can be solved iteratively, at every image cell, according to the

equation
fk+l = A' g(f),

where k is the iteration number. The matrix A (or A-') depends only on the observed
data. It needs to be computed once, but it differs from point to point.

This formulation, in general, requires a lot of computation and is not really suitable
for implementation on a serial machine. It can, however, be readily implemented on a
highly parallel computer, such as the Connection MachineTM. For a 128 by 128 image, the
Connection Machine implementation runs approximately 1000 faster than a Symbolics

3 6 4 0 TM Lisp Machine implementation.

5 Examples

Example 1 - Multiplier Effect with No Offset: Figure 2 shows a pair of image

frames from a synthetic motion sequence. Each image contains a background texture
and a central texture; each texture is gaussian-smoothed uniform noise. Sharp texture
boundaries between the background and the central circular object have been preserved

* in each image. The circular region undergoes rigid rotation between frames. In addition
to the rotation of the central circular region, the second image has been multiplied by
a factor which varies linearly from 0.75 in the lower left corner to 1.25 in the upper
right corner, as shown in Figure 3a. An offset of zero was used and all A parameters
were set to 1. The computed multiplier field, shown in Figure 3b, varies in a range from
0.82 in the lower left corner to 1.22 in the upper right corner. Here the linear trend is
clearly discernible. The computed optical flow after 100 iterations is shown in Figure

4 (the needles indicate flow direction and rate). The offset field for this example had

negligible values, with absolute values not exceeding 0.002. This is to be expected, as the
experiment was designed so that the offset field would not be needed.
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16 Computing Optical Flow

More accurate results were obtained for AP= 0.1 (all other A parameters were set to 1)
as shown in figures 5. The off-set field was negligible with absolute values not exceeding
0.0002, and the multiplier field varied in a range from 0.76 in the lower left corner to 1.26

in the upper right corner.

To check the improvement offered by this algorithm, the Horn & Schunck algorithm
was also used on this image sequence. This is equivalent to using Am. = A = oo in our

formulation. The results of the Horn & Schunck algorithm, Figure 6, were in agreement

near the center of the image and the upper left and lower right corners, where the multi-

plier was approximately 1. The two algorithms did not agree, and the unmodified Horn

&Schunck algorithm was clearly incorrect, at the lower left and upper right image corners

where the multiplier had its greatest effect. This illustrates the inability of the Horn &

Schunck algorithm to correctly handle images sequences where the brightness constancy

constraint does not apply.

Figure 7 shows the solution obtained using the algorithm of Cornelius & Kanade.

(This was done using A,. = o and Ac = 1 in our formulation.) As expected, there is

not much improvement over the solution from Horn & Schunck algorithm since their

algorithm is designed to compensate for effects similar to an offset in an image sequence

(however, the offset was set to zero for this example).

Example 2 - Multiplier and Offset Effects: Figure 8 shows the pair of images for
this example. The motion is as in the previous case, the multiplier field varies linearly

from 0.9 in the lower left corner to 1.1 in the upper right corner, and the offset is 5 (the
grey-level values were increased by 5 units). The computed optical flow using our method

is shown in Figure 9 (all A parameters were set equal to 1). Figures 10 and 11 show the
same using the methods of Horn & Schunck and Cornelius & Kanade, respectively. Again,

these were obtained by setting Am = Ac = oo (to simulate Horn & Schunck algorithm),

and Am = oo and A, = 1 (to simulate Cornelius & Kanade algorithm) in our formulation.

These results are reasonable where the multiplier and offset effects approximately cancel

each other. They break down where the multiplier and offset have their greatest effects;

that is, in the upper right corner of the image. We conclude that the Horn & Schunck

algorithm does not correctly handle images sequences where the brightness constancy
constraint is violated. Similarly, the algorithm of Cornelius & Kanade breaks down in

"I regions of the image where multiplier effects are dominant.

6 Reducing the Computation

In many practical situations, the off-set ct is near 0. Therefore, the algorithm can be

. . .. .......
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sped up by ignoring the offset term. We can instead use the updating equation

flk+1 = (A')-' gI(?k)

to compute the optical flow and the multiplier fields. Here, we have defined

V Aii- EyEtf '=(L), gI(i) = ( A1- E,Et
mt Am ' + EEt

and

1 E'A + E2 A, + AmX, -EzEAm EEA,
(E+E2,, \m\+EE(A')-' - E2Am + E 2 A. + AreA. EEEA

EEA, EyEA, E-A. + EYA, + A.

where
w = AMA2 + E2 A2 + (E,2 + E')AA,,

If the offset term is not negligible, then the estimates obtained from the above vector

equation may be used as initial conditions in the original updating equations.

7 Summary and Extensions

Much of the existing methods for computing the local optical flow depend on two kinds of

constraii t: the flow field smoothness constraint and the brightness constancy constraint.

The brightness constancy constraint permits one to match image brightness values across

images. This constraint is sometimes very restrictive.

We have proposed a new formulation by replacing the brightness constancy constraint

with a more general constraint, which permits a linear transformation between image

brightness values. The transformation parameters are allowed to vary slowly in space,
so that inexact matching is allowed. We have formulated the problem of computing the

optical flow as a minimization of a quadratic cost functional. Using variational methods,

we have shown that the problem reduces to solving Laplacian equations for the two

components of the optical flow field and the two transformation fields. We have described

the implementation on a highly parallel computer, and presented sample results.

One of the disadvantages associated with the use of the smoothness constraint is

the degree of smoothness imposed on the unknown velocity and transformation fields.

In fact, the algorithm developed here tends to smooth over discontinuities both in the

optical flow and transformation fields. One way to overcome this shortcoming is to use
"line processes" (Marroquin [1984]). Simply put, the idea is to incorporate in the penalty

function the cost of introducing a discontinuity in the optical flow or transformation fields

.0
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instead of interpolating smoothly between two neighboring points when the gradient -.

becomes large. A line process is a boolean variable; it takes on the value 1 where there

is a discontinuity and 0, otherwise.

There is, however, a drawback associated with the introduction of line processes in

the minimization scheme, namely, that the cost functional becomes non-convex. This

generally calls for inventing sophisticated optimization methods that can be computa-

tionally exhaustive; for example, a simulated annealing scheme (Marroquin 19841). or

an algorithm based on neuronal network models (Hopfield & Tank [1985 , Koch et al.

'19861).

Alternatively, we can employ the graduated non-convexity algorithm based on the

concept of weak continuity constraints (Blake & Zisserman[19861). Here, the process of

minimizing a non-convex cost functional is replaced by minimizing a sequence of cost

functions, the first of which is a convex approximation to the true cost functional and the

last one is the true non-convex cost functional. Needless to say, we have yet to implement

any of these schemes.
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